菜单

Show posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.

Show posts 菜单

Messages - s

#556
晕,我才看到这个帖子~~~~^_^ 呵呵呵呵~
#557
站务讨论 / Re: Return
2006 四月 02, 22:54:06
啊!看来真有问题!再给我一周时间!
#558
啊~~!!!!不是站长么??!!!怎么变成我了!!
楼主才是站长,大家不要被骗了~!
#559
啊?是那个页面(url)啊?我也没看到呢?
#560
古墓丽影三部曲 / Re: 一些视频下载
2006 三月 30, 18:01:53
呵呵 表情还是这么。。。 :laughing11: :love10: :hello2: :icon_silent:
#561
3、UCS-2、UCS-4、BMP
UCS有两种格式:UCS-2和UCS-4。顾名思义,UCS-2就是用两个字节编码,UCS-4就是用4个字节(实际上只用了31位,最高位必须为0)编码。下面让我们做一些简单的数学游戏:

UCS-2有2^16=65536个码位,UCS-4有2^31=2147483648个码位。

UCS-4根据最高位为0的最高字节分成2^7=128个group。每个group再根据次高字节分为256个plane。每个plane根据第3个字节分为256行 (rows),每行包含256个cells。当然同一行的cells只是最后一个字节不同,其余都相同。

group 0的plane 0被称作Basic Multilingual Plane, 即BMP。或者说UCS-4中,高两个字节为0的码位被称作BMP。

将UCS-4的BMP去掉前面的两个零字节就得到了UCS-2。在UCS-2的两个字节前加上两个零字节,就得到了UCS-4的BMP。而目前的UCS-4规范中还没有任何字符被分配在BMP之外。

4、UTF编码

UTF-8就是以8位为单元对UCS进行编码。从UCS-2到UTF-8的编码方式如下:

UCS-2编码(16进制)  UTF-8 字节流(二进制) 
0000 - 007F  0xxxxxxx 
0080 - 07FF  110xxxxx 10xxxxxx 
0800 - FFFF  1110xxxx 10xxxxxx 10xxxxxx 

例如"汉"字的Unicode编码是6C49。6C49在0800-FFFF之间,所以肯定要用3字节模板了: 1110 xxxx 10 xxxxxx 10 xxxxxx。将6C49写成二进制是:0110 110001 001001, 用这个比特流依次代替模板中的x,得到: 1110 0110 10 110001 10 001001,即E6 B1 89。

读者可以用记事本测试一下我们的编码是否正确。需要注意,UltraEdit在打开utf-8编码的文本文件时会自动转换为UTF-16,可能产生混淆。你可以在设置中关掉这个选项。更好的工具是Hex Workshop。

UTF-16以16位为单元对UCS进行编码。对于小于0x10000的UCS码,UTF-16编码就等于UCS码对应的16位无符号整数。对于不小于0x10000的UCS码,定义了一个算法。不过由于实际使用的UCS2,或者UCS4的BMP必然小于0x10000,所以就目前而言,可以认为UTF-16和UCS-2基本相同。但UCS-2只是一个编码方案,UTF-16却要用于实际的传输,所以就不得不考虑字节序的问题。

5、UTF的字节序和BOM
UTF-8以字节为编码单元,没有字节序的问题。UTF-16以两个字节为编码单元,在解释一个UTF-16文本前,首先要弄清楚每个编码单元的字节序。例如"奎"的Unicode编码是594E,"乙"的Unicode编码是4E59。如果我们收到UTF-16字节流"594E",那么这是"奎"还是"乙"?

Unicode规范中推荐的标记字节顺序的方法是BOM。BOM不是"Bill Of Material"的BOM表,而是Byte Order Mark。BOM是一个有点小聪明的想法:

在UCS编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输字符"ZERO WIDTH NO-BREAK SPACE"。

这样如果接收者收到FEFF,就表明这个字节流是Big-Endian的;如果收到FFFE,就表明这个字节流是Little-Endian的。因此字符"ZERO WIDTH NO-BREAK SPACE"又被称作BOM。

UTF-8不需要BOM来表明字节顺序,但可以用BOM来表明编码方式。字符"ZERO WIDTH NO-BREAK SPACE"的UTF-8编码是EF BB BF(读者可以用我们前面介绍的编码方法验证一下)。所以如果接收者收到以EF BB BF开头的字节流,就知道这是UTF-8编码了。

Windows就是使用BOM来标记文本文件的编码方式的。

6、进一步的参考资料
本文主要参考的资料是 "Short overview of ISO-IEC 10646 and Unicode" ( http://www.nada.kth.se/i18n/ucs/unicode-iso10646-oview.html) 。

我还找了两篇看上去不错的资料,不过因为我开始的疑问都找到了答案,所以就没有看:

"Understanding Unicode A general introduction to the Unicode Standard" ( http://scripts.sil.org/cms/scrip ... S-Chapter04a)
"Character set encoding basics Understanding character set encodings and legacy encodings" ( http://scripts.sil.org/cms/scrip ... WS-Chapter03)
我写过UTF-8、UCS-2、GBK相互转换的软件包,包括使用Windows API和不使用Windows API的版本。以后有时间的话,我会整理一下放到我的个人主页上( http://fmddlmyy.home4u.china.com) 。

我是想清楚所有问题后才开始写这篇文章的,原以为一会儿就能写好。没想到考虑措辞和查证细节花费了很长时间,竟然从下午1:30写到9:00。希望有读者能从中受益。

附录1 再说说区位码、GB2312、内码和代码页
有的朋友对文章中这句话还有疑问:
"GB2312的原文还是区位码,从区位码到内码,需要在高字节和低字节上分别加上A0。"

我再详细解释一下:

"GB2312的原文"是指国家1980年的一个标准《中华人民共和国国家标准 信息交换用汉字编码字符集 基本集 GB 2312-80》。这个标准用两个数来编码汉字和中文符号。第一个数称为"区",第二个数称为"位"。所以也称为区位码。1-9区是中文符号,16-55区是一级汉字,56-87区是二级汉字。现在Windows也还有区位输入法,例如输入1601得到"啊"。(这个区位输入法可以自动识别16进制的GB2312和10进制的区位码,也就是说输入B0A1同样会得到"啊"。)

内码是指操作系统内部的字符编码。早期操作系统的内码是与语言相关的。现在的Windows在系统内部支持Unicode,然后用代码页适应各种语言,"内码"的概念就比较模糊了。微软一般将缺省代码页指定的编码说成是内码。

内码这个词汇,并没有什么官方的定义,代码页也只是微软这个公司的叫法。作为程序员,我们只要知道它们是什么东西,没有必要过多地考证这些名词。

所谓代码页(code page)就是针对一种语言文字的字符编码。例如GBK的code page是CP936,BIG5的code page是CP950,GB2312的code page是CP20936。

Windows中有缺省代码页的概念,即缺省用什么编码来解释字符。例如Windows的记事本打开了一个文本文件,里面的内容是字节流:BA、BA、D7、D6。Windows应该去怎么解释它呢?

是按照Unicode编码解释、还是按照GBK解释、还是按照BIG5解释,还是按照ISO8859-1去解释?如果按GBK去解释,就会得到"汉字"两个字。按照其它编码解释,可能找不到对应的字符,也可能找到错误的字符。所谓"错误"是指与文本作者的本意不符,这时就产生了乱码。

答案是Windows按照当前的缺省代码页去解释文本文件里的字节流。缺省代码页可以通过控制面板的区域选项设置。记事本的另存为中有一项ANSI,其实就是按照缺省代码页的编码方法保存。

Windows的内码是Unicode,它在技术上可以同时支持多个代码页。只要文件能说明自己使用什么编码,用户又安装了对应的代码页,Windows就能正确显示,例如在HTML文件中就可以指定charset。

有的HTML文件作者,特别是英文作者,认为世界上所有人都使用英文,在文件中不指定charset。如果他使用了0x80-0xff之间的字符,中文Windows又按照缺省的GBK去解释,就会出现乱码。这时只要在这个html文件中加上指定charset的语句,例如:
<meta http-equiv="Content-Type" content="text/html; charset=ISO8859-1">
如果原作者使用的代码页和ISO8859-1兼容,就不会出现乱码了。

再说区位码,啊的区位码是1601,写成16进制是0x10,0x01。这和计算机广泛使用的ASCII编码冲突。为了兼容00-7f的ASCII编码,我们在区位码的高、低字节上分别加上A0。这样"啊"的编码就成为B0A1。我们将加过两个A0的编码也称为GB2312编码,虽然GB2312的原文根本没提到这一点。

#562


这是一篇程序员写给程序员的趣味读物。所谓趣味是指可以比较轻松地了解一些原来不清楚的概念,增进知识,类似于打RPG游戏的升级。整理这篇文章的动机是两个问题: 问题一:
使用Windows记事本的"另存为",可以在GBK、Unicode、Unicode big endian和UTF-8这几种编码方式间相互转换。同样是txt文件,Windows是怎样识别编码方式的呢?
我很早前就发现Unicode、Unicode big endian和UTF-8编码的txt文件的开头会多出几个字节,分别是FF、FE(Unicode),FE、FF(Unicode big endian),EF、BB、BF(UTF-8)。但这些标记是基于什么标准呢? 问题二: 最近在网上看到一个ConvertUTF.c,实现了UTF-32、UTF-16和UTF-8这三种编码方式的相互转换。对于Unicode(UCS2)、GBK、UTF-8这些编码方式,我原来就了解。但这个程序让我有些糊涂,想不起来UTF-16和UCS2有什么关系。
查了查相关资料,总算将这些问题弄清楚了,顺带也了解了一些Unicode的细节。写成一篇文章,送给有过类似疑问的朋友。本文在写作时尽量做到通俗易懂,但要求读者知道什么是字节,什么是十六进制。
0、big endian和little endian
big endian和little endian是CPU处理多字节数的不同方式。例如"汉"字的Unicode编码是6C49。那么写到文件里时,究竟是将6C写在前面,还是将49写在前面?如果将6C写在前面,就是big endian。如果将49写在前面,就是little endian。
"endian"这个词出自《格列佛游记》。小人国的内战就源于吃鸡蛋时是究竟从大头(Big-Endian)敲开还是从小头(Little-Endian)敲开,由此曾发生过六次叛乱,一个皇帝送了命,另一个丢了王位。
我们一般将endian翻译成"字节序",将big endian和little endian称作"大尾"和"小尾"。
1、字符编码、内码,顺带介绍汉字编码
字符必须编码后才能被计算机处理。计算机使用的缺省编码方式就是计算机的内码。早期的计算机使用7位的ASCII编码,为了处理汉字,程序员设计了用于简体中文的GB2312和用于繁体中文的big5。
GB2312(1980年)一共收录了7445个字符,包括6763个汉字和682个其它符号。汉字区的内码范围高字节从B0-F7,低字节从A1-FE,占用的码位是72*94=6768。其中有5个空位是D7FA-D7FE。
GB2312支持的汉字太少。1995年的汉字扩展规范GBK1.0收录了21886个符号,它分为汉字区和图形符号区。汉字区包括21003个字符。
从ASCII、GB2312到GBK,这些编码方法是向下兼容的,即同一个字符在这些方案中总是有相同的编码,后面的标准支持更多的字符。在这些编码中,英文和中文可以统一地处理。区分中文编码的方法是高字节的最高位不为0。按照程序员的称呼,GB2312、GBK都属于双字节字符集 (DBCS)。
2000年的GB18030是取代GBK1.0的正式国家标准。该标准收录了27484个汉字,同时还收录了藏文、蒙文、维吾尔文等主要的少数民族文字。从汉字字汇上说,GB18030在GB13000.1的20902个汉字的基础上增加了CJK扩展A的6582个汉字(Unicode码0x3400-0x4db5),一共收录了27484个汉字。
CJK就是中日韩的意思。Unicode为了节省码位,将中日韩三国语言中的文字统一编码。GB13000.1就是ISO/IEC 10646-1的中文版,相当于Unicode 1.1。
GB18030的编码采用单字节、双字节和4字节方案。其中单字节、双字节和GBK是完全兼容的。4字节编码的码位就是收录了CJK扩展A的6582个汉字。 例如:UCS的0x3400在GB18030中的编码应该是8139EF30,UCS的0x3401在GB18030中的编码应该是8139EF31。
微软提供了GB18030的升级包,但这个升级包只是提供了一套支持CJK扩展A的6582个汉字的新字体:新宋体-18030,并不改变内码。Windows 的内码仍然是GBK。
这里还有一些细节:
GB2312的原文还是区位码,从区位码到内码,需要在高字节和低字节上分别加上A0。
对于任何字符编码,编码单元的顺序是由编码方案指定的,与endian无关。例如GBK的编码单元是字节,用两个字节表示一个汉字。 这两个字节的顺序是固定的,不受CPU字节序的影响。UTF-16的编码单元是word(双字节),word之间的顺序是编码方案指定的,word内部的字节排列才会受到endian的影响。后面还会介绍UTF-16。
GB2312的两个字节的最高位都是1。但符合这个条件的码位只有128*128=16384个。所以GBK和GB18030的低字节最高位都可能不是1。不过这不影响DBCS字符流的解析:在读取DBCS字符流时,只要遇到高位为1的字节,就可以将下两个字节作为一个双字节编码,而不用管低字节的高位是什么。
2、Unicode、UCS和UTF
前面提到从ASCII、GB2312、GBK到GB18030的编码方法是向下兼容的。而Unicode只与ASCII兼容(更准确地说,是与ISO-8859-1兼容),与GB码不兼容。例如"汉"字的Unicode编码是6C49,而GB码是BABA。
Unicode也是一种字符编码方法,不过它是由国际组织设计,可以容纳全世界所有语言文字的编码方案。Unicode的学名是"Universal Multiple-Octet Coded Character Set",简称为UCS。UCS可以看作是"Unicode Character Set"的缩写。
根据维基百科全书(
http://zh.wikipedia.org/wiki/)
的记载:历史上存在两个试图独立设计Unicode的组织,即国际标准化组织(ISO)和一个软件制造商的协会(unicode.org)。ISO开发了ISO 10646项目,Unicode协会开发了Unicode项目。
在1991年前后,双方都认识到世界不需要两个不兼容的字符集。于是它们开始合并双方的工作成果,并为创立一个单一编码表而协同工作。从Unicode2.0开始,Unicode项目采用了与ISO 10646-1相同的字库和字码。
目前两个项目仍都存在,并独立地公布各自的标准。Unicode协会现在的最新版本是2005年的Unicode 4.1.0。ISO的最新标准是ISO 10646-3:2003。
UCS只是规定如何编码,并没有规定如何传输、保存这个编码。例如"汉"字的UCS编码是6C49,我可以用4个ascii数字来传输、保存这个编码;也可以用utf-8编码:3个连续的字节E6 B1 89来表示它。关键在于通信双方都要认可。UTF-8、UTF-7、UTF-16都是被广泛接受的方案。UTF-8的一个特别的好处是它与ISO-8859-1完全兼容。UTF是"UCS Transformation Format"的缩写。
IETF的RFC2781和RFC3629以RFC的一贯风格,清晰、明快又不失严谨地描述了UTF-16和UTF-8的编码方法。我总是记不得IETF是Internet Engineering Task Force的缩写。但IETF负责维护的RFC是Internet上一切规范的基础。
2.1、内码和code page
目前Windows的内核已经支持Unicode字符集,这样在内核上可以支持全世界所有的语言文字。但是由于现有的大量程序和文档都采用了某种特定语言的编码,例如GBK,Windows不可能不支持现有的编码,而全部改用Unicode。
Windows使用代码页(code page)来适应各个国家和地区。code page可以被理解为前面提到的内码。GBK对应的code page是CP936。
微软也为GB18030定义了code page:CP54936。但是由于GB18030有一部分4字节编码,而Windows的代码页只支持单字节和双字节编码,所以这个code page是无法真正使用的。
#563
休闲话题 / Re: UTF-8的详细讲解
2006 三月 30, 14:26:21
UTF-8的详细讲解(8)
ISO 2022 标准指定了一系列的 ESC % 序列, 以离开 ISO 2022 世界 (指定其他的编码系统, DOCS), 用于 UTF-8 的许多这样的序列已经注册进了 ISO 2375 International Register of Coded Character Sets:

ESC %G 从 ISO 2022 里激活一个未指定实现级别的 UTF-8 模式且允许再返回 ISO 2022.
ESC %@ 从 UTF-8 回到 ISO 2022, 条件是通过 ESC %G 进入的 UTF-8
ESC %/G 切换进 UTF-8 级别 1 且不返回.
ESC %/H 切换进 UTF-8 级别 2 且不返回.
ESC %/I 切换进 UTF-8 级别 3 且不返回.
当一个终端模拟器在 UTF-8 模式时, 任何 ISO 2022 逃脱码序列例如用于切换 G2/G3 等的都被忽略. 一个在 UTF-8 模式下的终端模拟器唯一会执行的 ISO 2022 序列是 ESC %@ 以从 UTF-8 返回 ISO 2022 方案.

UTF-8 仍然允许你使用象 CSI 这样的 C1 控制字符, 尽管 UTF-8 也使用 0x80-0x9F 范围里的字节. 重要的是必须理解在 UTF-8 模式下的终端模拟器必须在执行任何控制字符前对收到的字节流运用 UTF-8 解码器. C1 字符与其他任何大于 U+007F 的字符一样需先经过 UTF-8 解码.

已经有哪些支持 UTF-8 的应用程序了?
Yudit 是 Gaspar Sinai 的自由 X11 Unicode 编辑器
Mined 98 由 Thomas Wolff 提供, 是一个可以处理 UTF-8 的文本编辑器.
less 版本 346 或更高, 支持 UTF-8
C-Kermit 7.0 在传输, 终端, 及文件字符集方面支持 UTF-8.
Sam 是 Plan9 的 UTF-8 编辑器, 类似于 vi, 也可用于 Linux 和 Win32. (Plan9 是第一个完全转向 UTF-8, 将其作为字符编码的操作系统.)
9term 由 Matty Farrow 提供, 是一个 Plan9 操作系统的 Unicode/UTF-8 终端模拟器的 Unix 移植.
Wily 是一个 Plan9 Acme 编辑器的 Unix 实现.
ucm-0.1 是 Juliusz Chroboczek 的 Unicode 字符映射表, 一个小工具, 使你可以选中任何一个 Unicode 字符并粘贴进你的应用程序.
有哪些用于改善 UTF-8 支持的补丁?
Robert Brady 提供了一个 patch for less 340 (现在已经合并进了 less 344)
Bruno Haible 提供了用于 stty, Linux 核心 tty 等的 多个补丁.
Otfried Cheong 编写了 Unicode encoding for GNU Emacs 工具箱, 使 Mule 能够处理 UTF-8 文件.
Postscript 字形的名字与 UCS 代码是怎么关联的?
参考 Adobe 的 Unicode and Glyph Names 指南.

X11 的剪切与粘贴工作在 UTF-8 时是如何完成的?
参考 Juliusz Chroboczek 的 客户机间 Unicode 文本的交换 草案, 对 ICCCM 的一个扩充的建议, 用一个新的可用于属性类型(property type)和选中(selection)目标的原子 UTF8_STRING 来处理 UTF-8 的选中.

现在有没有用于处理 Unicode 的免费的库?
IBM Classes for Unicode
Mark Leisher 的 UCData Unicode 字符属性库和 wchar_t 支持测试码.
各种 X widget 对 Unicode 支持的现状如何?
GScript - Unicode 与复杂文本处理 是一个为 GTK+ 增加全功能的 Unicode 支持的项目.
Qt 2.0 现在支持使用 *-ISO10646-1 字体了.
FriBidi 是 Dov Grobgeld 的 Unicode 双向算法的免费实现.
有什么关于这个话题的好的邮件列表?
你确实应该订阅的是 unicode@unicode.org 邮件列表, 这是发现标准的作者和其他许多领袖的话语的最好办法. 订阅方法是, 用 "subscribe" 作为标题, "subscribe YOUR@EMAIL.ADDR ESS unicode" 作为正文, 发一条消息到 unicode-request@unicode.org .

也有一个专注与改进通常用于 GNU/Linux 系统上应用程序的 UTF-8 支持的邮件列表 linux-utf8@nl.linux.org . 订阅方法是, 以 "subscribe linux-utf8" 为内容, 发送消息到 majordomo@nl.linux.org . 你也可以浏览 linux-utf8 archive

其他相关的还有 XFree86 组的 "字体" 与 "i18n" 列表, 但你必须成为一名正式的开发者才能订阅.

更多参考
Bruno Haible 's Unicode HOWTO.
The Unicode Standard, Version 2.0
Unicode Technical Reports
Mark Davis' Unicode FAQ
ISO/IEC 10646-1:1993
Frank Tang's I?t?rnati?nàliz?ti?n Secrets
Unicode Support in the Solaris 7 Operating Environment
The USENIX paper by Rob Pike and Ken Thompson on the introduction of UTF-8 under Plan9 reports about the first operating system that migrated already in 1992 completely to UTF-8 (which was at the time still called UTF-2).
Li18nux is a project initiated by several Linux distributors to enhance Unicode support for Linux.
The Online Single Unix Specification contains definitions of all the ISO C Amendment 1 function, plus extensions such as wcwidth().
The Open Group's summary of ISO C Amendment 1.
GNU libc
The Linux Console Tools
The Unicode Consortium character database and character set conversion tables are an essential resource for anyone developping Unicode related tools.
Other conversion tables are available from Microsoft and Keld Simonsen's WG15 archive.
Michael Everson's ISO10646-1 archive contains online versions of many of the more recent ISO 10646-1 amendments, plus many other goodies. See also his Roadmaps to the Universal Character Set.
An introduction into The Universal Character Set (UCS).
Otfried Cheong's essey on Han Unification in Unicode
The AMS STIX project is working on revising and extending the mathematical characters for Unicode 4.0 and ISO 10646-2.
Jukka Korpela's Soft hyphen (SHY) - a hard problem? is an excellent discussion of the controversy surrounding U+00AD.
James Briggs' Perl, Unicode and I18N FAQ.
我不断地将新的材料加入这份文档, 因此请定期来查看. 欢迎所有关于改进的建议, 以及自由软件社区里关于改善 UTF-8 支持的广告. UTF-8 用在 Linux 里是新近的事, 因此我们在将来的几个月里可以见到大量的进展.
#564
休闲话题 / Re: UTF-8的详细讲解
2006 三月 30, 14:24:07
UTF-8的详细讲解(7)
我在哪儿能找到 ISO 10646-1 X11 字体?
在过去的几个月里出现了相当多的 X11 的 Unicode 字体, 并且还在快速增多.

Markus Kuhn 正和其他许多志愿者一起工作于手动将旧的 -misc-fixed-*-iso8859-1 字体扩展到覆盖所有的欧洲字符表 (拉丁, 希腊, 斯拉夫, 国际音标字母表. 数学与技术符号, 某些字体里甚至有亚美尼亚语, 乔治亚语, 片假名等). 更多信息请参考 Unicode fonts and tools for X11 页. 这些字体将与 XFree86 一起分发. 例如字体
-misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso10646-1

(旧的 xterm 的 fixed 缺省字体的一个扩展, 包括超过 3000 个字符) 已经是 XFree86 3.9 snapshot 的一部分了.

Markus 也做好了 X11R6.4 distribution 里所有的 Adobe 和 B&H BDF 字体的 ISO 10646 版本. 这些字体已经包含了全部 Postscript 字体表 (大约 30 个额外的字符, 大部分也被 CP1252 MS-Windows 使用, 如 smart quotes, dashes 等), 在 ISO 8859-1 编码下是没有的. 它们在 ISO 10646-1 版本里是完全可用的.
XFree86 4.0 将携带一个集成的 TrueType 字体引擎, 这使得你的 X 应用程序可以将任何 Apple/Microsoft 字体用于 ISO 10646-1 编码.
将来的 XFree86 版本很有可能从分发版中去除大多数旧的 BDF 字体, 取而代之的是 ISO 10646-1 编码的版本. X 服务器则会增加一个自动编码转换器, 只有当旧的 8 位软件请求一个类似于 ISO 8859-* 编码的字体时, 才虚拟地从 ISO 10646-1 字体文件中创建一个这样的字体. 现代软件应该优先地直接使用 ISO 10646-1 字体编码.
ClearlyU (cu12) 是一个非常有用的 X11 的 12 点阵, 100 dpi 的 proportional ISO 10646-1 BDF 字体, 包含超过 3700 个字符, 由 Mark Leisher 提供 (样例图象).
Roman Czyborra 的 GNU Unicode font 项目工作于收集一个完整的与免费的 8×16/16×16 pixel Unicode 字体. 目前已经覆盖了 34000 个字符.
etl-unicode 是一个 ISO 10646-1 BDF 字体, 由 Primoz Peterlin 提供.
Unicode X11 字体名字以 -ISO10646-1 结尾. 这个 X 逻辑字体描述器 (X Logical Font Descriptor, XLFD) 的 CHARSET_REGISTRY 和 CHARSET_ENCODING 域里的值已经为所有 Unicode 和 ISO 10646-1 的 16 位字体而正式地注册了. 每个 *-ISO10646-1 字体都包含了整个 Unicode 字符集里的某几个子集, 而用户必须弄清楚他们选择的字体覆盖哪几个他们需要的字符子集.

*-ISO10646-1 字体通常也指定一个 DEFAULT_CHAR 值, 指向一个非 Unicode 字形, 用来表示所有在该字体里不可用的字符 (通常是一个虚线框, 一个 H 的大小, 位于 0x1F 或 0xFFFE). 这使得用户至少能知道这儿有一个不支持的字符. xterm 用的小的定宽字体比如 6x13 等, 将永远无法覆盖所有的 Unicode, 因为许多文字比如日本汉字只能用比欧洲用户广泛使用的大的象素尺寸才能表示. 欧洲使用的典型的 Unicode 字体将只包含大约 1000 到 3000 个字符的子集.

我怎样才能找出一个 X 字体里有哪些字形?
X 协议无法让一个应用程序方便地找出一个 cell-spaced 字体提供哪些字形, 它没有为字体提供这样的量度. 因此 Mark Leisher 和 Erik van de Poel (Netscape) 指定了一个新的 _XFREE86_GLYPH_RANGES BDF 属性, 告诉应用程序该 BDF 字体实现了哪个 Unicode 子集. Mark Leisher 提供了一些样例代码以产生并扫描这个属性, 而 Xmbdfed 3.9 以及更高版本将自动将其加入到由它产生的每个 BDF 文件里.

与 UTF-8 终端模拟器相关的问题是什么?
VT100 终端模拟器接受 ISO 2022 (=ECMA-35) ESC 序列, 用于在不同的字符集间切换.

UTF-8 在 ISO 2022 的意义里是一个 "其他编码系统" (参考 ECMA 35 的 15.4 节). UTF-8 是在 ISO 2022 SS2/SS3/G0/G1/G2/G3 世界之外的, 因此如果你从 ISO 2022 切换到 UTF-8, 所有的 SS2/SS3/G0/G1/G2/G3 状态都变得没有意义了, 直到你离开 UTF-8 并切换回 ISO 2022. UTF-8 是一个没有国家的编码, 也就是一个自我终结的短字节序列完全决定了它代表什么字符, 独立于任何国家的切换. G0 与 G1 在 ISO 10646 里与在 ISO 8859-1 里相同, 而 G2/G3 在 ISO 10646 里不存在, 因为任何字符都有固定的位置, 因而不会发声切换. 在 UTF-8 模式下, 你的终端不会因为你偶然地装入一个二进制文件而切换入一种奇怪图形字符模式. 这使得一个终端在 UTF-8 模式下比在 ISO 2022 模式下要健壮得多, 而且因此可以有办法将终端锁在 UTF-8 模式里, 而不会偶然地回到 ISO 2022 世界里.
#565
休闲话题 / Re: UTF-8的详细讲解
2006 三月 30, 14:22:53
UTF-8的详细讲解(6)
新的支持 UTF-8 的 xterm 版本, 以及一些 ISO 10646-1 字体, 将被收录入 XFree86 4.0 版里.

xterm 支持组合字符吗?
Xterm 当前只支持级别1的 ISO 10646-1, 就是说, 不提供组合字符的支持. 当前, 组合字符将被当作空格字符对待. xterm 将来的修订版很有可能加入某些简单的组合字符支持, 就是仅仅将那个有一个或多个组合字符的基字符加粗 (logical OR-ing). 对于在基线以下的和在小字符上方的重音符来说, 这样处理的结果还是可以接受的. 对于象泰国文字体那样使用特别设计的加粗字符的文字, 这样处理也能工作的很好. 然而, 对于某些字体里, 在较高的字符上方组合上的重音符, 特别是对于 "fixed" 字体族, 产生的结果就不完全令人满意了. 因此, 在可用的地方, 应该继续优先使用预作字符.

xterm 支持半宽与全宽 CJK 字体吗?
Xterm 当前只支持那种所有字形都等宽的 cell-spaced 的字体. 将来的修订版很有可能为 CJK 语言加入半宽与全宽字符支持, 类似于 kterm 提供的那种. 如果选择的普通字体是 X×Y 象素大小, 且宽字符模式是打开的, 那么 xterm 会试图装入另外的一个 2X×Y 象素大小的字体 (同样的 XLFD, 只是 AVERAGE_WIDTH 属性的值翻倍). 它会用这个字体来显示所有在 Unicode Technical Report #11 里被分配了East Asian Wide (W) 或 East Asian FullWidth (F) 宽度属性的 Unicode 字符. 下面这个 C 函数用来测试一个 Unicode 字符是否是宽字符并需要用覆盖两个字符单元的字形来显示:

/* This function tests, whether the ISO 10646/Unicode character code
* ucs belongs into the East Asian Wide (W) or East Asian FullWidth
* (F) category as defined in Unicode Technical Report #11. In this
* case, the terminal emulator should represent the character using a
* a glyph from a double-wide font that covers two normal (Latin)
* character cells. */

int iswide(int ucs)
{
if (ucs < 0x1100)
return 0;

return
(ucs >= 0x1100 && ucs <= 0x115f) || /* Hangul Jamo */
(ucs >= 0x2e80 && ucs <= 0xa4cf && (ucs & ~0x0011) != 0x300a &&
ucs != 0x303f) || /* CJK ... Yi */
(ucs >= 0xac00 && ucs <= 0xd7a3) || /* Hangul Syllables */
(ucs >= 0xf900 && ucs <= 0xfaff) || /* CJK Compatibility Ideographs */
(ucs >= 0xfe30 && ucs <= 0xfe6f) || /* CJK Compatibility Forms */
(ucs >= 0xff00 && ucs <= 0xff5f) || /* Fullwidth Forms */
(ucs >= 0xffe0 && ucs <= 0xffe6);
}
某些 C 库也提供了函数

#include <wchar.h>
int wcwidth(wchar_t wc);
int wcswidth(const wchar_t *pwcs, size_t n);
用来测定该宽字符 wc 或由 pwcs 指向的字符串中的 n 个宽字符码 (或者少于 n 个宽字符码, 如果在 n 个宽字符码之前遇到一个空宽字符的话) 所要求的列位置的数量. 这些函数定义在 Open Group 的 Single UNIX Specification 里. 一个拉丁/希腊/斯拉夫/等等的字符要求一个列位置, 一个 CJK 象形文字要求两个, 而一个组合字符要求零个.

最终 xterm 是否会支持从右到左的书写?
此刻还没有给 xterm 增加从右到左功能的计划. 希伯来与阿拉伯用户因此不得不靠应用程序在将希伯来文与阿拉伯文字符串送到终端前按左方向翻转它们, 换句话说, 双向处理必须在应用程序里完成, 而不是在 xterm 里. 至少, 希伯来与阿拉伯文在预作字形的可用性的形式上, 以及提示表格上的支持, 比 ISO 8859 要有所改进. 现在还远没有决定 xterm 是否支持双向文字以及该怎样工作. ISO 6429 = ECMA-48 和 Unicode bidi algorithm 都提供了可供选择的开始点. 也可以参考 ECMA Technical
Report TR/53. Xterm 也不处理阿拉伯文, Hangul 或 印度文本的格式化算法, 而且现在还不太清楚在 VT100 模拟器里处理是否可行和值得, 或者应该留给应用软件去处理. 如果你打算在你的应用程序里支持双向文字输出, 看一下 FriBidi, Dov Grobgeld 的 Unicode 双向算法的自由实现.
#566
休闲话题 / Re: UTF-8的详细讲解
2006 三月 30, 14:21:14
UTF-8的详细讲解(5)
POSIX 系统的 tty 驱动程序支持一种 "cooked" 模式, 有一些原始的行编辑功能. 为了让字符删除功能工作正常, stty 必须在 tty 驱动程序里设置 UTF-8 模式, 因此它就不会把 0x80 到 0xBF 范围内的跟随字符也数进去了. Bruno Haible 那里已经有了一些 stty 和核心 tty 驱动 程序的 Linux 补丁 了.
C 对 Unicode 和 UTF-8 的支持
从 GNU glibc 2.1 开始, wchar_t 类型已经正式定为只存放独立于当前 locale 的, 32位的 ISO 10646 值. glibc 2.2 开始将完全支持 ISO C 中的多字节转换函数 (wprintf(),mbstowcs(),等等), 这些函数可以用于在 wchar_t 和包括 UTF-8 在内的任何依赖于 locale 的多字节编码间进行转换.

例如, 你可以写

wprintf(L"Sch鰊e Gre!\n");
然后, 你的软件将按照你的用户在环境变量 LC_CTYPE (例如, en_US.UTF-8 或 de_DE.ISO_8859-1) 中选择的 locale 所指定的编码来打印这段文字. 你的编译器必须运行在与该 C 源文件所用编码相应的 locale 中, 在目标文件中以上的宽字符串将改为 wchar_t 字符串存储. 在输出时, 运行时库将把 wchar_t 字符串转换回与程序执行时的 locale 相应的编码.

注意, 类似这样的操作:

char c = L"a";
只允许从 U+0000 到 U+007F (7 位 ASCII) 范围里的字符. 对于非 ASCII 字符, 不能直接从 wchar_t 到 char 转换.

现在, 象 readline() 这样的函数在 UTF-8 locale 下也能工作了.

怎样激活 UTF-8 模式?
如果你的应用程序既支持 8 位字符集 (ISO 8859-*,KOI-8,等等), 也支持 UTF-8, 那么它必须通过某种方法以得知是否应使用 UTF-8 模式. 幸运的是, 在未来的几年里, 人们将只使用 UTF-8, 因此你可以将它作为默认, 但即使如此, 你还是得既支持传统 8 位字符集, 也支持 UTF-8.

当前的应用程序使用许许多多的不同的命令行开关来激活它们各自的 UTF-8 模式, 例如:

xterm 命令行选项 "-u8" 和 X resource "XTerm*utf8:1"
gnat/gcc 命令行选项 "-gnatW8"
stty 命令行选项 "iutf8"
mined 命令行选项 "-U"
xemacs elisp 包裹 以在 UTF-8 和内部使用的 MULE 编码间转换
vim 'fileencoding' 选项
less 环境变量 LESSCHARSET=utf-8
记住每一个应用程序的命令行选项或其他配置方法是非常单调乏味的, 因此急需某种标准方法.

如果你在你的应用程序里使用硬转换, 并使用某种特定的 C 库函数来处理外部字符编码和内部使用的 wchar_t 编码的转换工作, 那么 C 库会帮你处理模式切换的问题. 你只需将环境变量 LC_CTYPE 设为正确的 locale, 例如, 如果你使用 UTF-8, 那就是en.UTF-8, 而如果是 Latin-1, 并需要英语的转换, 则设为 en.ISO_8859-1.

然而, 大多数现存软件的维护者选择用软转换来代替, 而不使用 libc 的宽字符函数, 不仅因为它们还未得到广泛应用, 还因为这会使得软件进行大规模修改. 在这种情况下, 你的应用程序必须自己来获知何时使用 UTF-8 模式. 一种方式是做以下工作:

按照环境变量 LC_ALL, LC_CTYPE, LANG 的顺序, 寻找第一个有值的变量. 如果该值包含 UTF-8 子串 (也许是小写或没有"-") 则默认为 UTF-8 模式 (仍然可以用命令行开关来重设), 因为这个值可靠又恰当地指示了 C 库应该使用一种 UTF-8 locale.

提供一个命令行选项 (或者如果是 X 客户程序则用 X resource 的值) 将仍然是有用的, 可以用来重设由 LC_CTYPE 等环境变量指定的默认值.

我怎样才能得到 UTF-8 版本的 xterm?
在 XFree86 里带的 xterm 版本最近已经由 Thomas E. Dickey 加入了支持 UTF-8 的扩展. 使用方法是, 获取 xterm patch #119 (1999-10-16) 或更新版本, 用 "./configure --enable-wide-chars ; make" 来编译, 然后用命令行选项 -u8 来调用 xterm, 使它将输入输出转换为 UTF-8. 在 UTF-8 模式里使用一个 *-ISO10646-1 字体. 当你在 ISO 8859-1 模式里时也可以使用 *-ISO10646-1 字体, 因为 ISO 10646-1 字体与 ISO 8859-1 字体是完全向后兼容的.
#567
休闲话题 / Re: UTF-8的详细讲解
2006 三月 30, 14:20:29
UTF-8的详细讲解(4)
文件名
标准输入与标准输出, 管道
环境变量
剪切与粘贴选择缓冲区
telnet, modem 和到终端模拟器的串口连接
以及其他地方以前用ASCII来表示的字节串
在 UTF-8 模式下, 终端模拟器, 比如 xterm 或 Linux console driver, 将每次按键转换成相应的 UTF-8 串, 然后发送到前台进程的 stdin 里. 类似的, 任何进程在 stdout 上的输出都将发送到终端模拟器, 在那里用一个 UTF-8 解码器进行处理, 之后再用一种 16 位的字体显示出来.

只有在功能完善的多语言字处理器包里才可能有完全的 Unicode 功能支持. 而广泛用在 Linux 里用于取代 ASCII 和其他 8 位字符集的方案则要简单得多. 第一步, Linux 终端模拟器和命令行工具将只是转变到 UTF-8. 这意味着只用到 级别1 的 ISO 10646-1 实现 (没有组合字符), 且只支持那些不需要更多处理的语言象 拉丁, 希腊, 斯拉夫 和许多科学用符号. 在这个级别上, UCS 支持与 ISO 8859 支持类似, 唯一显著的区别是现在我们有几千种字符可以用了, 其中的字符可以用多字节串来表示.

总有一天 Linux 会当然地支持组合字符, 但即便如此, 对于组合字符串, 预作字符(如何可用的话)仍将是首选的. 更正式地, 在 Linux 下用 Unicode 对文本编码的首选的方法应该是定义在 Unicode Technical Report #15 里的 Normalization Form C.

在今后的一个阶段, 人们可以考虑增加在日文和中文里用到的双字节字符的支持 (他们相对比较简单), 组合字符支持, 甚至也许对从右至左书写的语言如希伯来文 (他们可不是那么简单的) 的支持. 但对这些高级功能的支持不应该阻碍简单的平板 UTF-8 在 拉丁, 希腊, 斯拉夫和科学用符号方面的快速应用, 以取代大量的欧洲 8 位编码, 并提供一个象样的科学用符号集.

我该怎样修改我的软件?
有两种途径可以支持 UTF-8, 我称之为软转换与硬转换. 软转换时, 各处的数据均保存为 UTF-8 形式, 因而需要修改的软件很少. 在硬转换时, 程序将读入的 UTF-8 数据转换成宽字符数组, 以在应用程序内部处理. 在输出时, 再把字符串转换回 UTF-8 形式.

大多数应用程序只用软转换就可以工作得很好了. 这使得将 UTF-8 引入 Unix 成为切实可行的. 例如, 象 cat 和 echo 这样的程序根本不需要修改. 他们仍然可以对输入输出的是 ISO 8859-2 还是 UTF-8 一无所知, 因为它们只是搬运字节流而没有处理它们. 它们只能识别 ASCII 字符和象 '\n' 这样的控制码, 而这在 UTF-8 下也没有任何改变. 因此, 这些应用程序的 UTF-8 编码与解码将完全在终端模拟器里完成.

而那些通过数字节数来获知字符数量的程序则需要一些小修改. 在 UTF-8 模式下, 它们必须不数入 0x80 到 0xBF 范围内的字节, 因为这些只是跟随字节, 它们本身并不是字符. 例如, ls 程序就必须要修改, 因为它通过数文件名中字符数来排放给用户的目录表格布局. 类似地, 所有的假定其输出为定宽字体, 并因此而格式化它们的程序, 必须学会怎样数 UTF-8 文本中的字符数. 编辑器的功能, 如删除单个字符, 必须要作轻微的修改, 以删除可能属于该字符的所有字节. 受影响有编辑器 (vi,emacs, 等等)以及使用 ncurses 库的程序.

Linux 核心使用软转换也可以工作得很好, 只需要非常微小的修改以支持 UTF-8. 大多数处理字符串的核心功能 (例如: 文件名, 环境变量, 等等) 都不受影响. 下列地方也许必须修改:

控制台显示与键盘驱动程序 (另一个 VT100 模拟器) 必须能编码和解码 UTF-8, 必须要起码支持 Unicode 字符集的几个子集. 从 Linux 1.2 起这些功能已经有了.
外部文件系统驱动程序, 例如 VFAT 和 WinNT 必须转换文件名字符编码. UTF-8 已经加入可用的转换选项的列表里了, 因此 mount 命令必须告诉核心驱动程序用户进程希望看到 UTF-8 文件名. 既然 VFAT 和 WinNT 无论如何至少已经用了 Unicode了, 那么 UTF-8 在这里就可以发挥其优势, 以保证转换中无信息损失.

#568
休闲话题 / Re: UTF-8 字符集基础
2006 三月 30, 14:20:03
UTF-8 字符集基础(2)

UTF-8 C++ 程序编码示例:

下面是四个C++函数,他们分别实现2字节和4字节UNICODE和UTF-8之间的转换。

#define MASKBITS 0x3F
#define MASKBYTE 0x80
#define MASK2BYTES 0xC0
#define MASK3BYTES 0xE0
#define MASK4BYTES 0xF0
#define MASK5BYTES 0xF8
#define MASK6BYTES 0xFC

typedef unsigned short Unicode2Bytes;
typedef unsigned int Unicode4Bytes;

void UTF8Encode2BytesUnicode(std::vector< Unicode2Bytes > input,
std::vector< byte >& output)
{
for(int i=0; i < input.size(); i++)
{
// 0xxxxxxx
if(input < 0x80)
{
output.push_back((byte)input);
}
// 110xxxxx 10xxxxxx
else if(input < 0x800)
{
output.push_back((byte)(MASK2BYTES | input >> 6));
output.push_back((byte)(MASKBYTE | input & MASKBITS));
}
// 1110xxxx 10xxxxxx 10xxxxxx
else if(input < 0x10000)
{
output.push_back((byte)(MASK3BYTES | input >> 12));
output.push_back((byte)(MASKBYTE | input >> 6 & MASKBITS));
output.push_back((byte)(MASKBYTE | input & MASKBITS));
}
}
}

void UTF8Decode2BytesUnicode(std::vector< byte > input,
std::vector< Unicode2Bytes >& output)
{
for(int i=0; i < input.size();)
{
Unicode2Bytes ch;

// 1110xxxx 10xxxxxx 10xxxxxx
if((input & MASK3BYTES) == MASK3BYTES)
{
ch = ((input & 0x0F) << 12) | (
(input[i+1] & MASKBITS) << 6)
| (input[i+2] & MASKBITS);
i += 3;
}
// 110xxxxx 10xxxxxx
else if((input & MASK2BYTES) == MASK2BYTES)
{
ch = ((input & 0x1F) << 6) | (input[i+1] & MASKBITS);
i += 2;
}
// 0xxxxxxx
else if(input < MASKBYTE)
{
ch = input;
i += 1;
}

output.push_back(ch);
}
}

void UTF8Encode4BytesUnicode(std::vector< Unicode4Bytes > input,
std::vector< byte >& output)
{
for(int i=0; i < input.size(); i++)
{
// 0xxxxxxx
if(input < 0x80)
{
output.push_back((byte)input);
}
// 110xxxxx 10xxxxxx
else if(input < 0x800)
{
output.push_back((byte)(MASK2BYTES | input > 6));
output.push_back((byte)(MASKBYTE | input & MASKBITS));
}
// 1110xxxx 10xxxxxx 10xxxxxx
else if(input < 0x10000)
{
output.push_back((byte)(MASK3BYTES | input >> 12));
output.push_back((byte)(MASKBYTE | input >> 6 & MASKBITS));
output.push_back((byte)(MASKBYTE | input & MASKBITS));
}
// 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
else if(input < 0x200000)
{
output.push_back((byte)(MASK4BYTES | input >> 18));
output.push_back((byte)(MASKBYTE | input >> 12 & MASKBITS));
output.push_back((byte)(MASKBYTE | input >> 6 & MASKBITS));
output.push_back((byte)(MASKBYTE | input & MASKBITS));
}
// 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
else if(input < 0x4000000)
{
output.push_back((byte)(MASK5BYTES | input >> 24));
output.push_back((byte)(MASKBYTE | input >> 18 & MASKBITS));
output.push_back((byte)(MASKBYTE | input >> 12 & MASKBITS));
output.push_back((byte)(MASKBYTE | input >> 6 & MASKBITS));
output.push_back((byte)(MASKBYTE | input & MASKBITS));
}
// 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
else if(input < 0x8000000)
{
output.push_back((byte)(MASK6BYTES | input >> 30));
output.push_back((byte)(MASKBYTE | input >> 18 & MASKBITS));
output.push_back((byte)(MASKBYTE | input >> 12 & MASKBITS));
output.push_back((byte)(MASKBYTE | input >> 6 & MASKBITS));
output.push_back((byte)(MASKBYTE | input & MASKBITS));
}
}
}

void UTF8Decode4BytesUnicode(std::vector< byte > input,
std::vector< Unicode4Bytes >& output)
{
for(int i=0; i < input.size();)
{
Unicode4Bytes ch;

// 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
if((input & MASK6BYTES) == MASK6BYTES)
{
ch = ((input & 0x01) << 30) | ((input[i+1] & MASKBITS) << 24)
| ((input[i+2] & MASKBITS) << 18) | ((input[i+3]
& MASKBITS) << 12)
| ((input[i+4] & MASKBITS) << 6) | (input[i+5] & MASKBITS);
i += 6;
}
// 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
else if((input & MASK5BYTES) == MASK5BYTES)
{
ch = ((input & 0x03) << 24) | ((input[i+1]
& MASKBITS) << 18)
| ((input[i+2] & MASKBITS) << 12) | ((input[i+3]
& MASKBITS) << 6)
| (input[i+4] & MASKBITS);
i += 5;
}
// 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
else if((input & MASK4BYTES) == MASK4BYTES)
{
ch = ((input & 0x07) << 18) | ((input[i+1]
& MASKBITS) << 12)
| ((input[i+2] & MASKBITS) << 6) | (input[i+3] & MASKBITS);
i += 4;
}
// 1110xxxx 10xxxxxx 10xxxxxx
else if((input & MASK3BYTES) == MASK3BYTES)
{
ch = ((input & 0x0F) << 12) | ((input[i+1] & MASKBITS) << 6)
| (input[i+2] & MASKBITS);
i += 3;
}
// 110xxxxx 10xxxxxx
else if((input & MASK2BYTES) == MASK2BYTES)
{
ch = ((input & 0x1F) << 6) | (input[i+1] & MASKBITS);
i += 2;
}
// 0xxxxxxx
else if(input < MASKBYTE)
{
ch = input;
i += 1;
}
output.push_back(ch);
}
}


限译者水平有限,有不解之处请参考原文。版权属原文作者所有,转载请注明出处及作者。

原文参见:http://www.codeguru.com/Cpp/misc ... article.php/c10451/
#569
休闲话题 / Re: UTF-8的详细讲解
2006 三月 30, 14:18:28
UTF-8的详细讲解(3)
在 Unix 下使用 UCS-2 (或 UCS-4) 会导致非常严重的问题. 用这些编码的字符串会包含一些特殊的字符, 比如 '\0' 或 '/', 它们在 文件名和其他 C 库函数参数里都有特别的含义. 另外, 大多数使用 ASCII 文件的 UNIX 下的工具, 如果不进行重大修改是无法读取 16 位的字符的. 基于这些原因, 在文件名, 文本文件, 环境变量等地方, UCS-2 不适合作为 Unicode 的外部编码.

在 ISO 10646-1 Annex R 和 RFC 2279 里定义的 UTF-8 编码没有这些问题. 它是在 Unix 风格的操作系统下使用 Unicode 的明显的方法.

UTF-8 有一下特性:

UCS 字符 U+0000 到 U+007F (ASCII) 被编码为字节 0x00 到 0x7F (ASCII 兼容). 这意味着只包含 7 位 ASCII 字符的文件在 ASCII 和 UTF-8 两种编码方式下是一样的.
所有 >U+007F 的 UCS 字符被编码为一个多个字节的串, 每个字节都有标记位集. 因此, ASCII 字节 (0x00-0x7F) 不可能作为任何其他字符的一部分.
表示非 ASCII 字符的多字节串的第一个字节总是在 0xC0 到 0xFD 的范围里, 并指出这个字符包含多少个字节. 多字节串的其余字节都在 0x80 到 0xBF 范围里. 这使得重新同步非常容易, 并使编码无国界, 且很少受丢失字节的影响.
可以编入所有可能的 231个 UCS 代码
UTF-8 编码字符理论上可以最多到 6 个字节长, 然而 16 位 BMP 字符最多只用到 3 字节长.
Bigendian UCS-4 字节串的排列顺序是预定的.
字节 0xFE 和 0xFF 在 UTF-8 编码中从未用到.
下列字节串用来表示一个字符. 用到哪个串取决于该字符在 Unicode 中的序号.

U-00000000 - U-0000007F: 0xxxxxxx
U-00000080 - U-000007FF: 110xxxxx 10xxxxxx
U-00000800 - U-0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
U-00010000 - U-001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
U-00200000 - U-03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
U-04000000 - U-7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

xxx 的位置由字符编码数的二进制表示的位填入. 越靠右的 x 具有越少的特殊意义. 只用最短的那个足够表达一个字符编码数的多字节串. 注意在多字节串中, 第一个字节的开头"1"的数目就是整个串中字节的数目.

例如: Unicode 字符 U+00A9 = 1010 1001 (版权符号) 在 UTF-8 里的编码为:

11000010 10101001 = 0xC2 0xA9

而字符 U+2260 = 0010 0010 0110 0000 (不等于) 编码为:

11100010 10001001 10100000 = 0xE2 0x89 0xA0

这种编码的官方名字拼写为 UTF-8, 其中 UTF 代表 UCS Transformation Format. 请勿在任何文档中用其他名字 (比如 utf8 或 UTF_8) 来表示 UTF-8, 当然除非你指的是一个变量名而不是这种编码本身.

什么编程语言支持 Unicode?
在大约 1993 年之后开发的大多数现代编程语言都有一个特别的数据类型, 叫做 Unicode/ISO 10646-1 字符. 在 Ada95 中叫 Wide_Character, 在 Java 中叫 char.

ISO C 也详细说明了处理多字节编码和宽字符 (wide characters) 的机制, 1994 年 9 月 Amendment 1 to ISO C 发表时又加入了更多. 这些机制主要是为各类东亚编码而设计的, 它们比处理 UCS 所需的要健壮得多. UTF-8 是 ISO C 标准调用多字节字符串的编码的一个例子, wchar_t 类型可以用来存放 Unicode 字符.

在 Linux 下该如何使用 Unicode?
在 UTF-8 之前, 不同地区的 Linux 用户使用各种各样的 ASCII 扩展. 最普遍的欧洲编码是 ISO 8859-1 和 ISO 8859-2, 希腊编码 ISO 8859-7, 俄国编码 KOI-8, 日本编码 EUC 和 Shift-JIS, 等等. 这使得 文件的交换非常困难, 且应用软件必须特别关心这些编码的不同之处.

最终, Unicode 将取代所有这些编码, 主要通过 UTF-8 的形式. UTF-8 将应用在

文本文件 (源代码, HTML 文件, email 消息, 等等)

#570
休闲话题 / Re: UTF-8的详细讲解
2006 三月 30, 14:17:10
UTF-8的详细讲解(2)
组合字符跟随着被修饰的字符. 比如, 德语中的元音变音字符 ("拉丁大写字母A 加上分音符"), 既可以表示为 UCS 码 U+00C4 的预作字符, 也可以表示成一个普通 "拉丁大写字母A" 跟着一个"组合分音符":U+0041 U+0308 这样的组合. 当需要堆叠多个重音符, 或在一个基本字符的上面和下面都要加上组合标记时, 可以使用多个组合字符. 比如在泰国文中, 一个基本字符最多可加上两个组合字符.

什么是 UCS 实现级别?
不是所有的系统都需要支持象组合字符这样的 UCS 里所有的先进机制. 因此 ISO 10646 指定了下列三种实现级别:

级别1
不支持组合字符和 Hangul Jamo 字符 (一种特别的, 更加复杂的韩国文的编码, 使用两个或三个子字符来编码一个韩文音节)
级别2
类似于级别1, 但在某些文字中, 允许一列固定的组合字符 (例如, 希伯来文, 阿拉伯文, Devangari, 孟加拉语, 果鲁穆奇语, Gujarati, Oriya, 泰米尔语, Telugo, 印.埃纳德语, Malayalam, 泰国语和老挝语). 如果没有这最起码的几个组合字符, UCS 就不能完整地表达这些语言.
级别3
支持所有的 UCS 字符, 例如数学家可以在任意一个字符上加上一个 tilde(颚化符号,西班牙语字母上面的~)或一个箭头(或两者都加).
什么是 Unicode?
历史上, 有两个独立的, 创立单一字符集的尝试. 一个是国际标准化组织(ISO)的 ISO 10646 项目, 另一个是由(一开始大多是美国的)多语言软件制造商组成的协会组织的 Unicode 项目. 幸运的是, 1991年前后, 两个项目的参与者都认识到, 世界不需要两个不同的单一字符集. 它们合并双方的工作成果, 并为创立一个单一编码表而协同工作. 两个项目仍都存在并独立地公布各自的标准, 但 Unicode 协会和 ISO/IEC JTC1/SC2 都同意保持 Unicode 和 ISO 10646 标准的码表兼容, 并紧密地共同调整任何未来的扩展.

那么 Unicode 和 ISO 10646 不同在什么地方?
Unicode 协会公布的 Unicode 标准 严密地包含了 ISO 10646-1 实现级别3的基本多语言面. 在两个标准里所有的字符都在相同的位置并且有相同的名字.

Unicode 标准额外定义了许多与字符有关的语义符号学, 一般而言是对于实现高质量的印刷出版系统的更好的参考. Unicode 详细说明了绘制某些语言(比如阿拉伯语)表达形式的算法, 处理双向文字(比如拉丁与希伯来文混合文字)的算法和 排序与字符串比较 所需的算法, 以及其他许多东西.

另一方面, ISO 10646 标准, 就象广为人知的 ISO 8859 标准一样, 只不过是一个简单的字符集表. 它指定了一些与标准有关的术语, 定义了一些编码的别名, 并包括了规范说明, 指定了怎样使用 UCS 连接其他 ISO 标准的实现, 比如 ISO 6429 和 ISO 2022. 还有一些与 ISO 紧密相关的, 比如 ISO 14651 是关于 UCS 字符串排序的.

考虑到 Unicode 标准有一个易记的名字, 且在任何好的书店里的 Addison-Wesley 里有, 只花费 ISO 版本的一小部分, 且包括更多的辅助信息, 因而它成为使用广泛得多的参考也就不足为奇了. 然而, 一般认为, 用于打印 ISO 10646-1 标准的字体在某些方面的质量要高于用于打印 Unicode 2.0的. 专业字体设计者总是被建议说要两个标准都实现, 但一些提供的样例字形有显著的区别. ISO 10646-1 标准同样使用四种不同的风格变体来显示表意文字如中文, 日文和韩文 (CJK), 而 Unicode 2.0 的表里只有中文的变体. 这导致了普遍的认为 Unicode 对日本用户来说是不可接收的传说, 尽管是错误的.

什么是 UTF-8?
首先 UCS 和 Unicode 只是分配整数给字符的编码表. 现在存在好几种将一串字符表示为一串字节的方法. 最显而易见的两种方法是将 Unicode 文本存储为 2 个 或 4 个字节序列的串. 这两种方法的正式名称分别为 UCS-2 和 UCS-4. 除非另外指定, 否则大多数的字节都是这样的(Bigendian convention). 将一个 ASCII 或 Latin-1 的文件转换成 UCS-2 只需简单地在每个 ASCII 字节前插入 0x00. 如果要转换成 UCS-4, 则必须在每个 ASCII 字节前插入三个 0x00.